Solving Index Form Equations in Fields of Degree 9 with Cubic Subfields

نویسنده

  • István Gaál
چکیده

We describe an efficient algorithm for solving index form equations in number fields of degree 9 which are composites of cubic fields with coprime discriminants. We develop the algorithm in detail for the case of complex cubic fields, but the main steps of the procedure are also applicable for other cases. Our most important tool is the main theorem of a recent paper of Gaál (1998a). In view of this result the index form equation in the ninth degree field implies relative index form equations over the subfields. In our case these equations are cubic relative Thue equations over cubic fields. The main purpose of the paper is to show that this approach is much more efficient than the direct method, which consists of reducing the index form equation to unit equations over the normal closure of the original field. At the end of the paper we describe our computational experience. Many ideas of the paper can be applied to develop fast algorithms for solving index form equations in other types of higher degree fields which are composites of subfields. c © 2000 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

Solving the liner quadratic differential equations with constant coefficients using Taylor series with step size h

In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.

متن کامل

Computing all elements of given index in sextic fields with a cubic subfield

There are no general methods for calculating elements of given index in sextic fields. This problem was investigated only in sextic fields having quadratic subfields. In the present paper we give an algorithm to compute all elements of given index in sextic fields containing a cubic subfield. To illustrate the method we give a detailed example in the last section. AMS Classification Codes (2000...

متن کامل

Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations

As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...

متن کامل

Computing all power integral bases in orders of totally real cyclic sextic number fields

An algorithm is given for determining all power integral bases in orders of totally real cyclic sextic number fields. The orders considered are in most cases the maximal orders of the fields. The corresponding index form equation is reduced to a relative Thue equation of degree 3 over the quadratic subfield and to some inhomogeneous Thue equations of degree 3 over the rationals. At the end of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2000